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Using rows 2 through 4 of a unimodular 8 x 8 rotation matrix, the vertices of Eg 421, 241, and 142
are projected to 3D and then gathered & tallied into groups by the norm of their projected locations.
The resulting Platonic and Archimedean solid 3D structures are then used to study E8’s relationship
to other research areas, such as sphere packings in Grassmannian spaces, using Fs Eisenstein Theta
Series in recent proofs for optimal 8D and 24D sphere packings, nested lattices, and quantum basis
critical parity proofs of the Bell-Kochen-Specker (BKS) theorem.
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I. INTRODUCTION

This paper will introduce several possible new connec-
tions between Eg 451, 241, and 145 and the study of sphere
packings in Grassmannian spaces[1], using Eg Eisenstein
Theta Series in recent proofs for optimal 8D and 24D
sphere packings[2], nested lattices[3], and quantum basis
critical parity proofs of the Bell-Kochen-Specker (BKS)
theorem|[4].

A. Generating Polytopes

FIG. 1: Es 421 Petrie projection

Fig. 1 is the Petrie projection of the largest of the ex-
ceptional simple Lie algebras, groups and lattices called
Eg. The Split Real Even (SRE) form of Eg has a 497
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Gosset polytope of 240 vertices and 6720 edges of 8 di-
mensional (8D) length /2. In addition to this Eg root
polytope identified with the Dynkin diagram shown in
Fig. 2a, there are 28 — 1 = 255 possible permutations
of the Eg Dynkin diagram. Several of these other per-
mutations are commonly represented visually using the
Petrie projection basis. Among these others are the 2,160
vertex 241 and the 17,280 vertex 149 polytope, which are
constructed by generating the resulting roots by moving
the ringed (or filled) node to the other ends of the Dynkin
diagram, as shown in Figs. 2b and 2c respectively.

Interestingly, Es has been shown[5] to fold to the 4D
polychora of Hy (aka. the 120 vertex 720 edge 600-cell)
and a scaled copy Hy®, where ® = 1 (1+ V5) = 1.618...
> (V5-1) = /@ =

is the big golden ratio and ¢ =

® — 1 =0.618... is the small golden ratio.
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FIG. 2: Eg Dynkin diagrams a) 421, b) 241, ¢) la2
Also shown are the Cartan and simple root matrices which
correspond to the common Coxeter-Dynkin representation of
the diagrams.



B. 8D Platonic Rotation

In a previous paper[6], a unimodular form of a spe-
cific matrix for performing an 8D rotation of the SRE Ejg
group of root vertices results in the vertices of Hy (a.k.a.
the 600-cell). This rotation (or folding) matrix is related
to the Platonic solid icosahedron and was shown to be
that of (1).
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More interestingly from [7], H4,y,; can be generated us-
ing a combination of the unitary Hermitian matrices com-
monly used for Quantum Computing (QC) qubit logic,
namely those of the 2 qubit CNOT (2) and SWAP (3)
gates. Taking these patterns, combined with the recur-
sive functions that build ® from the Fibonacci sequence,
it is straightforward to derive H4,,; from scaled QC logic
gates. H4,y; is shown in Fig. 3.
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C. 2D and 3D Projection

Projection of Eg to 2D (or 3D) requires 2 (or 3) basis
vectors {X,Y,; Z}. For the Petrie projection shown in
Fig. 1, we start with the basis vectors in (4), which are
simply the two 2D Petrie projection basis vectors of the
600-cell (a.k.a. the Van Oss projection), with a 3rd (z)
basis vector added for the 3D projection.
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FIG. 3: Numeric H4,14 from the 2 Qubit CNOT and SWAP

QC gates and an integer Fibonacci series function output after

n = 20 iterations

Also shown are the symbolic and numeric calculation for its
determinant verifying unimodularity.

{X,Y,Z} = H4, . {z,y, 2} as shown in (5).

uni

X={ 0 .782 .428 .32 0 .253 0.428 —.32}
Y={ —348 0 .393 636 —.082 0 —.393 .636}
Z={ 1.029 0 .133 215 0.243 0 -—.133 .215}

(5)

The vertices of each permutation of Eg used in this
document are generated from the code shown in Fig. 8
of Appendix A.

Figs. 9-11 in Appendix B show various 2D projections
of 491, 241, and 145. The 7" projection “Eg — H,” is
the same as that used for what is described in the next
section as the “Platonic Projection Prism”. The symbolic
form of its basis vectors are shown in (6).

D. 3D Platonic Solid Projection Prism

While 3D projections can be generated for each set of
basis vectors used in Appendix B, there are only a few
that render interesting 3D structures. A few of these are
presented in Appendix C Figs. 12-13.

The most interesting 3D projections are found in Figs.
14-18 in Appendix C showing various projections of 451,
241, and 140 whch are based on “E8—H4”. This basis is
derived from the Platonic solid icosahedron. The twelve
vertices of the icosahedron can be decomposed into three
mutually-perpendicular golden rectangles (as shown in
Fig. 4), whose boundaries are linked in the pattern of the
Borromean rings. Rows (or columns) 2-4 (or 5-8) of H4,y;
contain 6 of the 12 vertices of this icosahedron, including
2 at the origin with the other 6 of 12 icosahedron vertices
being the antipodal reflection of these through the origin.
These 2 (or 3) rows are then used as a kind of “Platonic
solid projection prism” to form the 2 (or 3) 8D basis
vectors used in the 2D (or 3D) projection 491, 247, and
140.



FIG. 4: The icosahedron formed from 3 mutually-
perpendicular golden rectangles
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This Platonic solid projection in 3D manifests a
large number of concentric hulls with Platonic and
Archimedean solid related structures. The 8 hull 454,
which includes two 4 hull 600-cell structures (Hy & Hy®),
is shown in Fig. 5. The much larger sets of 241 and 142
are shown in Appendix C Figs. 14-16.

For example, the 3"% largest of 74 hulls in 145 is a pair
of overlapping 60 vertex rhombicosidodecahedrons shown
in more detail here in Fig. 6. It is an Archimedean solid,
one of thirteen convex isogonal nonprismatic solids. The
4th largest hull is a 120 vertex non-uniform truncated
icosidodecahedron shown in Fig. 7.

II. PLATONIC LINK TO SPHERE PACKINGS

Fig. 5 of [1] shows a geometric structure with 110 an-
tipodal points from the union of the vertex sets of a do-
decahedron (20), an icosidodecahedron (30), and a trun-
cated icosahedron (60). This is structurally the same as
that shown in Fig. 18c & 18d without the icosahedron
that centers on the pentagons of the truncated icosahe-
dron. The other difference is in the fact that the trunca-
tion of the icosahedron in the Eg projection is not regular
and results in a non-uniform rhombicosihedron as shown
in Figs. 17a and 18b.

These figures use only the outer two hulls of 451, 241,
and 142. The smaller of each of these three pairs of hulls
are scaled up to unit norm. For 497 = 241, the scale
factor used on the overlapping pair of icosahedrons is

FIG. 5: Individual and grouped concentric hulls of 42; in
Platonic 3D projection with numeric and symbolic norm dis-
tances and vertex count in increasing opacity

(8/(5++/5)) ~ 1.0514. For 1y, the scale factor used

1
on the overlapping pair of dodecahedrons is >~
1.0092.

It would be interesting to calculate the sphere packing
efficiencies of the geometries shown in Fig. 18 as well as
those individual hulls showon in Figs. 14-15. While it is
straight forward to calculate the projected vertex posi-
tions given the information in this paper, these are avail-
able in a Mathematica™ notebook that is available on
the author’s website http://www.TheoryOfEverything.
org/TOE/JGM/3D-Polytope-Hulls-of-E8.nb.

Also related to sphere packings, it was recently
proven[2] that the Eg root lattice and the Leech lat-
tice are universally optimal among point configurations
in Euclidean spaces of dimensions 8 and 24, respec-
tively. The proof relies on the use Laplace transforms
of quasimodular forms related to the Eisenstein F4(q)
Series integers that are the Theta series of the Fg lat-
tice. This series from http://oeis.org/A004009 is
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FIG. 6: Pair of overlapping rhombicosidodecahedrons from
374 largest hull of the 74 hulls in 142
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FIG. 7: Non-uniform truncated icosidodecahedrons from 4"
largest hull of the 74 hulls in 142

{1, 240, 2160, 6720, 17520, 30240, ...6026830}, noting that
the 4" term is the number of edges in 451, and the 5"
term is the number of 7-facets in 247, specifically 240 23,
polytopes and 17,280 7-simplices.

III. PLATONIC LINK TO NESTED LATTICES

Also related to Eg’s Gossett and Witting polytopes and
the aforementioned 451 and 24; Dynkin diagram permu-
tations, a blog article on nested lattices[3] credits Warren
D. Smith with observing that the sum of the first three
terms in the Theta Series of Ejg is a perfect fourth power
14240 + 2160 = 2401 = 7*. The vertices of the related
FEg groups in this series 457 and 247 have been visualized
in Figs. 9-10 of Appendix B. The 2160 vertex 24; is also
visualized in 3D in Figs. 12 and 14.

IV. PLATONIC LINK TO
BELL-KOCHEN-SPECKER (BKS) PARITY
PROOFS

The 4D 120 vertex 600-cell (Hy) has been shown[5]
to be easily generated by using H4,,; in (1) to rotate
FEg — H4. The dual 3D Platonic solid structure of icosa-
hedrons and dodecahedrons (embeded in the rhombic tri-
acontahedron) are contained within the 120 vertex 4D
600-cell, itself a combination of the self-dual 24-cells (i.e.
8-cell aka. the tesseract or hyper-cube and the 16-cell or-
thoplex or cross polytope). Indeed, it has been shown|[8]
that the 3D Platonic solid structures can be a generator
of H. 4-

In CP3, the Penrose dodecahedron of the BKS theo-
rem and the Witting polytope, which is the Complex 4D
representation of the SRE Fg used herein, are shown to
be identical[9]. This same structure has been linked to
the Bell-Kochen-Specker (BKS) parity proofs[4].

It would be interesting to calculate the proofs from the
geometries shown in Fig. 18 as well as those individual
hulls showon in Figs. 14-15.

V. CONCLUSION

This paper has introduced new visualizations and con-
nections between Eg 491, 241, and 149 and the study of
sphere packings in Grassmannian spaces[1], sphere pack-
ing proofs using Fs Eisenstein Theta Series for optimal
packing in 8D and 24D, nested lattices, and quantum
basis critical parity proofs of the Bell-Kochen-Specker
(BKS) theorem. It is anticipated that these visualiza-
tions and connections will be useful in discovering new
insights into unifying the mathematical symmetries as
related to unification in theoretical physics.
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Appendix A: Mathematica™ code to generate the
vertex sets 421, 241, and 142

(* Permutation functions &)

pm@n_ := Flatten[Outer[List, Sequence @@ Table[{-1, 1}, {n}]], n-1];

perms8[{a_,b ,c ,d ,e , f ,9 ,h_ }] :=Flatten[Permutationse{a #1, b #2, c #3, d #4, e 15, f #6, g #7, h #3} & @@@ pm@8, 1];
Eperms8@in_ := Select[perms8@in, EvenQ@Count[Signe#, -1] &];

(» E8 1_42 vertices =)
e8142 = Union@Join[perms8e {4, 2, 2, 2, 2, 0, 0, 0},
Flatten[Eperms8e & /@ {
{2, 2,2,2,2,2,2,2},
{5,1,1,1,1, 1,1, 1},
3,3,3,1,1,1,1,1}}, 111 /4;
Lengthe%
17280

(* Even to 0dd permutations in the last digit *)
e8142 = If[Total@Abs@e8142[[#] == 3, e8142[#], ReplacePart[e8142[#], 8 » -e8142[[#, 8] ]1] & /@ Range@Length@e8142;

(» E8 2_41 vertices x)

8241 = Union@Join|[
perms8[{1, @, 0, 0, 0, @, 0, 0} 4],
perms8[{1, 1, 1, 1, o, 0, 0, 0} 2],
Eperms8[ ({2, 90, 9,0, 0,0,0,0}+1)]]/4;

Length@%

2160

(* Even to 0dd permutations in the last digit *)
e8241 = (xx) \/?(**) If[Total@eAbs@e8241[#] > 2, ReplacePart[e8241[#], 8 » -e8241[#, 8]], €8241[#]] & /@ Range@Length@e8241;

(» E8 4_21 vertices scaled for Max Norm=1 from Unimodular C600 and it's 3D E8-H4 projection basis #)

e8421 = (%%)&(++) Union@Join[Eperms8e@{1,1,1,1,1,1,1, 1} /2, perms8@{1, 1, 0, 0, 0, 9, 0, 0}] (**)/ \/?(**);
Length@%

240

FIG. 8: Mathematica™ code to generate the vertex sets 421,
24]_, and 142

Appendix B: Various 2D projections of 421, 241, and

142
Figs. 9-11

Appendix C: Various 3D projections of 421, 241, and

142
Figs. 12-18
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FIG. 9: 42; Polytope projected to various planes

Each 2D projection shown lists the projection name, the nu-
meric basis vectors used, and the 421 overlap color coded ver-
tex groups, and the projection with vertices & 6720 edges
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FIG. 10: 421 Polytope projected to various planes

Each 2D projection shown lists the projection name, the nu-
meric basis vectors used, and the 421 & 24; overlap color coded
vertex groups, and the projection with vertices (larger) &
6720 edges and the 241 vertices (smaller)
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FIG. 11: 42; Polytope projected to various planes

Each 2D projection shown lists the projection name, the nu-
meric basis vectors used, and the 421 & 142 overlap color coded
vertex groups, and the projection with vertices (larger) &
6720 edges and the 140 vertices (smaller)
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FIG. 12: 451 & Polytope projected to various 3D spaces
Each 3D projection shown lists the projection name, the nu-
meric basis vectors used, and the 421 & 241 overlap color coded
vertex groups, and the projection with vertices (larger) &
6720 edges and the 241 vertices (smaller)
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FIG. 13: 421 & Polytope projected to various 3D spaces
Each 3D projection shown lists the projection name, the nu-
meric basis vectors used, and the 421 & 142 overlap color coded
vertex groups, and the projection with vertices (larger) &
6720 edges and the 142 vertices (smaller)
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FIG. 14: Concentric hulls of 24; in Platonic 3D projection
with vertex count in each hull and increasing opacity and
varied surface colors.

a) 24 individual concentric hulls
b) In groups of 8 hulls
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FIG. 15: Concentric hulls of 142 in Platonic 3D projection
with vertex count in each hull and increasing opacity and

varied surface colors.
a) 74 individual concentric hulls
b) In groups of 8 hulls
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FIG. 16: Combined concentric hulls of 24; and 142 in Platonic
3D projection with increasing opacity and varied surface col-
ors. Also listing grouped vertex counts color coded by over-
laps (black text) and norm distances and vertex counts (red
text).

a) 24 hulls of 241

b) 74 hulls of 142
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FIG. 17: Ey’s outer two hulls scaled to unit norms in Platonic
3D projection with increasing opacity and varied surface col-
ors. Also listing grouped vertex counts color coded by over-
laps (black text) and norm distances and vertex counts (red
text).

a) 100 vertex 142 non-uniform rhombicosidodecahedron (60
yellow vertices) & two overlapping dodecahedrons (20 red ver-
tices)

b) 208 vertex combination of a, adding two sets of 421=241
icosidodecahedrons (30 red) & four overlapping icosahedrons
(12 cyan vertices)

Note: The internal numbers of the image are the 8 axis (i.e.
the projection basis vectors).
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FIG. 18: Eg’s outer two hulls scaled to unit norms in Platonic
3D projection with vertex counts color coded by overlaps

a) 54 vertex (42 unique) 421=24; icosidodecahedron (30 yel-
low) & two overlapping icosahedrons (12 red) scaled 1.051
b) 100 vertex (80 unique) 142 non-uniform rhombicosidodeca-
hedron (60 yellow) & two overlapping dodecahedrons (20 red)
scaled 1.0092

¢) 154 vertex (122 unique) combination of a & b

d) 208 vertex (122 unique) combination same as ¢ with color
coded vertex counts for both 421 & 241

Note: The internal numbers of the image are the 8 axis (pro-
jection basis vectors).



